Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683029

RESUMO

Dealloying of Ag-Au alloy nanoparticles (NPs) strongly differs from the corresponding bulk alloy materials. Here, we have investigated the effects of potentiodynamic and potentiostatic dealloying on structure and distribution of residual Ag atoms for Au rich NPs. Two different sizes of Ag rich alloy NPs, 77 ± 26 nm Ag77Au23 and 12 ± 5 nm Ag86Au14, were prepared. 77 nm Ag77Au23 NPs form a homogeneous alloy, while 12 nm Ag86Au14 NPs show an Ag rich shell-Au rich core arrangement. The two groups of as-prepared NPs were dealloyed either under potentiodynamic (0.2-1.3 VRHE) or potentiostatic (0.9, 1.2, and 1.6 VRHE) conditions in 0.1 M HClO4. For the initial 77 nm Ag77Au23 NPs, both dealloying protocols lead to pore evolution. Interestingly, instead of homogenous Ag distribution, numerous Ag rich regions form and locate near the pores and particle edges. The critical dealloying potential also differs by ∼500 mV depending on the dealloying method. The initial 12 nm Ag86Au14 NPs remain dense and solid, but Ag distribution and thickness of the Au passivation layer vary between both dealloying protocols. When the Au passivation layer is very thin, the residual Ag atoms tend to segregate to the particle surface after dealloying. Due to the size effect, small NPs are less electrochemically stable and show a lower critical dealloying potential. In this systematic study, we demonstrate that the mobility of Au surface atoms and dealloying conditions control the structure and residual Ag distribution within dealloyed NPs.

2.
J Microsc ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372408

RESUMO

Atomic electric fields in a thin GaN sample are measured with the centre-of-mass approach in 4D-scanning transmission electron microscopy (4D-STEM) using a 12-segmented STEM detector in a Spectra 300 microscope. The electric fields, charge density and potential are compared to simulations and an experimental measurement using a pixelated 4D-STEM detector. The segmented detector benefits from a high recording speed, which enables measurements at low radiation doses. However, there is measurement uncertainty due to the limited number of segments analysed in this study.

3.
Catal Letters ; 153(11): 3405-3422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799191

RESUMO

In this article we shed light on newly emerging perspectives to characterize and understand the interplay of diffusive mass transport and surface catalytic processes in pores of gas phase metal catalysts. As a case study, nanoporous gold, as an interesting example exhibiting a well-defined pore structure and a high activity for total and partial oxidation reactions is considered. PFG NMR (pulsed field gradient nuclear magnetic resonance) measurements allowed here for a quantitative evaluation of gas diffusivities within the material. STEM (scanning transmission electron microscopy) tomography furthermore provided additional insight into the structural details of the pore system, helping to judge which of its features are most decisive for slowing down mass transport. Based on the quantitative knowledge about the diffusion coefficients inside a porous catalyst, it becomes possible to disentangle mass transport contributions form the measured reaction kinetics and to determine the kinetic rate constant of the underlying catalytic surface reaction. In addition, predictions can be made for an improved effectiveness of the catalyst, i.e., optimized conversion rates. This approach will be discussed at the example of low-temperature CO oxidation, efficiently catalysed by npAu at 30 °C. The case study shall reveal that novel porous materials exhibiting well-defined micro- and mesoscopic features and sufficient catalytic activity, in combination with modern techniques to evaluate diffusive transport, offer interesting new opportunities for an integral understanding of catalytic processes.

4.
Chem Rev ; 123(10): 6716-6792, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37133401

RESUMO

Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.

5.
Ultramicroscopy ; 245: 113661, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36529039

RESUMO

The ISTEM mode for TEM has been demonstrated to have several advantages in regard to resolution and precision. While previous works primarily focussed on the advantages due to the reduced spatial coherence, the actual image contrast, i.e. how bright or dark certain atom columns are imaged, has mostly been of secondary concern. The present work sets out to achieve the contrast of annular bright field STEM in ISTEM, producing the high contrast of light elements, for which this method is popular. It is shown from theoretical considerations that using an annular condenser aperture this aim can be realised. The optimal size of this aperture is found by simulative studies. It is then manufactured from platinum foil and installed in an image-aberration corrected microscope. ABF-like ISTEM images of strontium titanate in [100] projection are acquired. The pure oxygen columns are clearly resolved with significant contrast. The image pattern is indeed identical to what is achieved by ABF STEM. A close look at the image formation also shows that the dose needed for a given signal-to-noise ratio is at least a quarter smaller for ABF-like ISTEM compared to ABF STEM, assuming detectors of similar detective quantum efficiency.

6.
Ultramicroscopy ; 236: 113503, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278874

RESUMO

The measurement of electric fields in scanning transmission electron microscopy (STEM) is a highly investigated field of research. The constant improvement of spatial resolution in STEM and the development of new hardware for the fast acquisition of diffraction patterns even paved the way for the measurement of atomic electric fields. Although the basic principle that an electric field leads to a tilt of the focussed electron probe that can be detected as a shift of the diffraction pattern in the back focal plane of the objective lens seems quite simple, many challenges arose in the measurement of fields in a quantitative way. In the present study we investigate whether a shift of the diffraction pattern that occurs at an interface between two materials can be related to the electric field which is caused by the difference of the mean inner potentials of the two materials. To this end, experiments and simulations are compared. It is demonstrated that the difference in mean inner potential has an influence on the observed effect, but a quantitative interpretation is difficult. The influence of image recording effects such as shot noise and the modulation transfer function are investigated as well as further effects such as e.g. sample tilt. In addition, the influence of the observed effect on a strain measurement is shown.

7.
ChemistryOpen ; 10(7): 697-712, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34251087

RESUMO

Porous networks of Pt nanoparticles interlinked by bifunctional organic ligands have shown high potential as catalysts in micro-machined hydrogen gas sensors. By varying the ligand among p-phenylenediamine, benzidine, 4,4''-diamino-p-terphenyl, 1,5-diaminonaphthalene, and trans-1,4-diaminocyclohexane, new variants of such networks were synthesized. Inter-particle distances within the networks, determined via transmission electron microscopy tomography, varied from 0.8 to 1.4 nm in accordance with the nominal length of the respective ligand. While stable structures with intact and coordinatively bonded diamines were formed with all ligands, aromatic diamines showed superior thermal stability. The networks exhibited mesoporous structures depending on ligand and synthesis strategy and performed well as catalysts in hydrogen gas microsensors. They demonstrate the possibility of deliberately tuning micro- and mesoporosity and thereby transport properties and steric demands by choice of the right ligand also for other applications in heterogeneous catalysis.

8.
Ultramicroscopy ; 228: 113321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175788

RESUMO

4D-scanning transmission electron microscopy (4D-STEM) can be used to measure electric fields such as atomic fields or polarization-induced electric fields in crystal heterostructures. The paper focuses on effects occurring in 4D-STEM at interfaces, where two model systems are used: an AlN/GaN nanowire superlattice as well as a GaN/vacuum interface. Two different methods are applied: First, we employ the centre-of mass (COM) technique which uses the average momentum transfer evaluated from the intensity distribution in the diffraction pattern. Second, we measure the shift of the undiffracted disc (disc-detection method) in nano-beam electron diffraction (NBED). Both methods are applied to experimental and simulated 4D-STEM data sets. We find for both techniques distinct variations in the momentum transfer at interfaces between materials: In both model systems, peaks occur at the interfaces and we investigate possible sources and routes of interpretation. In case of the AlN/GaN superlattice, the COM and disc-detection methods are used to measure internal polarization-induced electric fields and we observed a reduction of the measured fields with increasing specimen thickness.

9.
Microsc Microanal ; 27(4): 678-686, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34085625

RESUMO

Quantitative structural characterization of nanomaterials is important to tailor their functional properties. Corrosion of AgAu-alloy nanoparticles (NPs) results in porous structures, making them interesting for applications especially in the fields of catalysis and surface-enhanced Raman spectroscopy. For the present report, structures of dealloyed NPs were reconstructed three-dimensionally using scanning transmission electron microscopy tomography. These reconstructions were evaluated quantitatively, revealing structural information such as pore size, porosity, specific surface area, and tortuosity. Results show significant differences compared to the structure of dealloyed bulk samples and can be used as input for simulations of diffusion or mass transport processes, for example, in catalytic applications.

10.
Ultramicroscopy ; 227: 113325, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34045084

RESUMO

In this paper we study the effect of lens aberrations (spherical aberration and astigmatism), beam tilt, contamination and shot noise on the accuracy and precision of position determination in imaging scanning transmission electron microscopy (ISTEM) on the example of BaTiO3. ISTEM images are simulated as a function of sample thickness and defocus starting from a nearly perfect microscope setting. A defocus range was identified, in which atom column positions were reliably visible and could be decently measured. By averaging over this defocus and thickness range a figure of merit was defined and used to study the influence of above mentioned disturbing effects as a function of their strength. It turned out that column positions might become inaccurate, but distances are measured accurately. These were used to obtain recommendations for the experimental setup to measure the atomic arrangement that induces ferroelectric switching of BaTiO3.

11.
Ultramicroscopy ; 221: 113196, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341079

RESUMO

Strain analysis by nano-beam electron diffraction allows for measurements of strain with nanometre resolution in a large field of view. This is done by evaluating distances between diffraction discs in diffraction patterns acquired while a focussed electron beam is scanned across the sample in a transmission electron microscope. The bottleneck of this method is a precise determination of diffraction disc positions, which suffers from the inner structure of the discs caused by dynamical diffraction. Electron beam precession is a tool that solves this problem but it is not commonly available in every microscope. Without precession significant progress has been reported recently by using patterned condenser apertures. The pattern of the aperture is reproduced in patterns of the diffraction discs allowing for a more precise position determination. In this report the accuracy of measured strain profiles using patterned apertures is investigated by evaluation of realistic simulations. This is done especially at interfaces between regions with different lattice plane spacing. It is found by evaluation of the simulations that measured strain profiles are more blurred and hence the accuracy at the interface is worse the more patterns are imprinted to the condenser aperture. An explanation of this effect is given and as a proof of principle a solution to this problem is provided applying geometric phase analysis ptychography.

12.
Ultramicroscopy ; 221: 113175, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383361

RESUMO

The angle-resolved electron scattering is investigated in scanning-transmission electron microscopy (STEM) using a motorised iris aperture placed above a conventional annular detector. The electron intensity scattered into various angle ranges is compared with simulations that were carried out in the frozen-lattice approximation. As figure of merit for the agreement of experiment and simulation we evaluate the specimen thickness which is compared with the thickness obtained from position-averaged convergent beam electron diffraction (PACBED). We find deviations whose strengths depend on the angular range of the detected electrons. As possible sources of error we investigate, for example, the influences of amorphous surface layers, inelastic scattering (plasmon excitation), phonon-correlation within the frozen-lattice approach, and distortions in the diffraction plane of the microscope. The evaluation is performed for four experimental thicknesses and two angle-resolved STEM series under different camera lengths. The results clearly show that especially for scattering angles below 50 mrad, it is mandatory that the simulations take scattering effects into account which are usually neglected for simulating high-angle scattering. Most influences predominantly affect the low-angle range, but also high scattering angles can be affected (e.g. by amorphous surface covering).

13.
Phys Chem Chem Phys ; 21(6): 3278-3286, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681677

RESUMO

Dealloyed nanoporous metals hold great promise in the field of heterogeneous catalysis; however their tendency to coarsen at elevated temperatures or under catalytic reaction conditions sometimes limit further applications. Here, we report on a highly stable nanoporous gold catalyst (npAu) functionalized with praseodymia-titania mixed oxides as synthesized by a sol-gel method. Specifically, we used aberration-corrected transmission electron microscopy to study the morphology and the interface between the oxide deposits and the npAu substrate at the atomic level. Based on electron energy loss spectroscopy (EELS), it is concluded that Pr-TiOx mixed oxides form a solid solution. Flow reactor tests reveal that the Pr-TiOx functionalized nanoporous gold is not only highly active but also very stable for the water gas shift reaction in a large temperature range (180-400 °C). Our results demonstrate the potential of engineering the compositions of oxides coatings on npAu for advanced functional systems.

14.
Ultramicroscopy ; 196: 74-82, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30291992

RESUMO

Images acquired in transmission electron microscopes can be distorted for various reasons such as e.g. aberrations of the lenses of the imaging system or inaccuracies of the image recording system. This results in inaccuracies of measures obtained from the distorted images. Here we report on measurement and correction of elliptical distortions of diffraction patterns. The effect of this correction on the measurement of crystal lattice strain is investigated. We show that the effect of the distortions is smaller than the precision of the measurement in cases where the strain is obtained from shifts of diffracted discs with respect to their positions in images acquired in an unstrained reference area of the sample. This can be explained by the fact that diffraction patterns acquired in the strain free reference area of the sample are distorted in the same manner as the diffraction patterns acquired in the strained region of interest. In contrast, for samples without a strain free reference region such as nanoparticles or nanoporous structures, where we evaluate ratios of lattice plane distances along different directions, the distortions are usually not negligible. Furthermore, two techniques for the detection of diffraction disc positions are compared showing that for samples in which the crystal orientation changes over the investigated area it is more precise to detect the positions of many diffraction discs simultaneously instead of detecting each disc position independently.

15.
Ultramicroscopy ; 190: 45-57, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29783102

RESUMO

Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe.

16.
Ultramicroscopy ; 181: 50-60, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28500987

RESUMO

Nano-beam electron diffraction (NBED) is a method which can be applied to measure lattice strain and polarisation fields in strained layer heterostructures and transistors. To investigate precision, accuracy and spatial resolution of such measurements in dependence of properties of the specimen as well as electron optical parameters, simulations of NBED patterns are required which allow to predict the result of common disc-detection algorithms. In this paper we demonstrate by focusing on the detection of the central disc in crystalline silicon that such simulations require to take several experimental characteristics into account in order to obtain results which are comparable to those from experimental NBED patterns. These experimental characteristics are the background intensity, the presence of Poisson noise caused by electron statistics and blurring caused by inelastic scattering and by the transfer quality of the microscope camera. By means of these optimized simulations, different effects of specimen properties on disc detection - such as strain, surface morphology and compositional changes on the nanometer scale - are investigated and discussed in the context of misinterpretation in experimental NBED evaluations. It is shown that changes in surface morphology and chemical composition lead to measured shifts of the central disc in the NBED pattern of tens to hundreds of µrad. These shifts are of the same order of magnitude or even larger than shifts that could be caused by an electric polarisation field in the range of MV/cm.

17.
Ultramicroscopy ; 158: 38-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26141289

RESUMO

Measurement of lattice strain is important to characterize semiconductor nanostructures. As strain has large influence on the electronic band structure, methods for the measurement of strain with high precision, accuracy and spatial resolution in a large field of view are mandatory. In this paper we present a theoretical study of precision and accuracy of measurement of strain by convergent nano-beam electron diffraction. It is found that the accuracy of the evaluation suffers from halos in the diffraction pattern caused by a variation of strain within the area covered by the focussed electron beam. This effect, which is expected to be strong at sharp interfaces between materials with different lattice plane distances, will be discussed for convergent-beam electron diffraction patterns using a conventional probe and for patterns formed by a precessing electron beam. Furthermore, we discuss approaches to optimize the accuracy of strain measured at interfaces. The study is based on the evaluation of diffraction patterns simulated for different realistic structures that have been investigated experimentally in former publications. These simulations account for thermal diffuse scattering using the frozen-lattice approach and the modulation-transfer function of the image-recording system. The influence of Poisson noise is also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...